
The Spectral Theorem.

Alonso Delf́ın
University of Oregon.

June 7, 2018

Abstract.

In 1963, Paul Halmos wrote the following in a paper:

“Most students of mathematics learn quite early and most mathematicians
remember till quite late that every Hermitian matrix may be put into di-
agonal form. The spectral theorem is widely and correctly regarded as the
generalization of this assertion to operators on Hilbert space. It is unfortu-
nate therefore that even the bare statement of the spectral theorem is widely
regarded as somewhat mysterious and deep, and probably inaccessible to the
nonspecialist. [...] Another reason the spectral theorem is thought to be hard
is that its proof is hard”

The purpose of my talk is the same Halmos’ paper has, to try to dispel some
of the mystery behind the spectral theorem. I’ll go over at least two exam-
ples, which should be accessible to everyone. Then, I’ll give a rough sketch
of the spectral theorem’s proof, in which I’ll assume some basic knowledge
in measure theory and C∗-algebras.

Motivation from Linear Algebra

Recall a matrix A ∈ Mn(C) is said to be Hermitian (or self adjoint) if it
is equal to its conjugate transpose, that is A∗ = A. We say that a matrix
A ∈ Mn(C) is normal if A∗A = AA∗. A matrix A ∈ Mn(C) is unitary if
A∗A = In = AA∗.

The linear algebraic statement of the spectral theorem says that if A ∈
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Mn(C) is normal, then there is a unitary matrix U ∈Mn(C) such that

A = UΛU∗

where Λ = diag(λ1, . . . , λn) for {λ1, . . . , λn} = σ(A).

We are now interested on giving a statement for the spectral theorem for
normal operators on B(H), where H is a separable Hilbert space not neces-
sarily finite dimensional.

Example. Suppose H is an infinite dimensional, separable Hilbert space.
Let T ∈ B(H) be an operator with discrete spectrum, say σ(T ) = {λn : n ∈
N}, such that

1. (λn)n∈N ∈ `∞(N),

2. each λn is an eigenvalue of T , with eigenvector given by en ∈ H, and

3. {en : n ∈ N} is an orthonormal basis for H.

This is the case, for example, when T is compact and normal. We now define
a map U : `2(N)→ H as follows

U(xn)n =
∑
n∈N

xnen

One checks that U is well defined linear map. Further, for any ξ ∈ H we
have

〈U(xn)n, ξ〉 =
∑
n∈N

xn〈en, ξ〉 =
∑
n∈N

xn〈ξ, en〉 = 〈(xn)n, (〈ξ, en〉)n〉`2

Thus, we have U∗ : H → `2(N) is given by

U∗ξ = (〈ξ, en〉)n

Now, using Parseval’s identity we get

UU∗ξ =
∑
n∈N
〈ξ, en〉en = ξ,

which gives UU∗ = idH. Also, since (en)n is orthonormal, we have

U∗U(xn)n = (〈
∑
k∈N

xkek, en〉)n = (
∑
k∈N

xk〈ek, en〉)n = (xn)n,
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and therefore U∗U = id`2(N). Next, we let M := U∗TU : `2(N) → `2(N).
Since Tek = λkek, it follows that

M(xn)n = U∗
∑
n∈N

xnλnen =
∑
n∈N

xnλn(〈en, ek〉)k = (xnλn)n

This is saying that M is in fact a “multiplication operator” by (λn)n, and
moreover this forces T to be a normal operator. Indeed,

〈M(xn)n, (yn)n〉 = 〈(xnλn)n, (yn)n〉 =
∑
n∈N

xnλnyn =
∑
n∈N

xnλnyn = 〈xn, λnyn〉.

This gives, M∗(yn)n = λnyn and therefore

M∗M(xn)n = (|λn|2xn) = MM∗(xn)n,

so M is normal. Thus, since T = UMU∗, we have

TT ∗ = UMU∗UM∗U∗ = UM∗MU∗ = (UMU∗)∗(UM∗U∗) = T ∗T

H
As a remark from the previous example, we notice that on the infinite dimen-
sional case, we are replacing the diagonal matrix Λ with a “multiplication
operator” M . We say more about what a multiplication operator is below.

Basic Definitions

Definition. (Multiplication Operator) Let (Ω,M, µ) be a σ-finite measure
space and f ∈ L∞(Ω, µ). We define an operator Mf on L2(Ω, µ) by

Mf (g)(ω) := f(ω)g(ω)

for any g ∈ L2(Ω, µ) and ω ∈ Ω. The operator Mf is called multiplication
by f . N

Properties. For any f, h ∈ L∞(Ω, µ) we have

• Mf ∈ B(L2(Ω, µ))

• ‖Mf‖ = ‖f‖∞

• Mf+h = Mf +Mh

• σ(Mf ) = f(Ω)
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Definition. Let H be a separable Hilbert space. An operator T ∈ B(H) is
said to be diagonalizable if there exist

1. a σ-finite measure space (ω,M, µ) such that L2(Ω, µ) is separable,

2. a function f ∈ L∞(Ω, µ), and

3. a unitary operator U : L2(Ω, µ)→ H such that T = UMfU
∗.

N

We are now ready to state the most general version of the spectral theorem:

Theorem. (The Spectral Theorem) Let H be a separable Hilbert space and
T ∈ B(H) a normal operator. Then T is diagonalizable.

Before sketching the proof, we give an immediate corollary and an example.

Corollary. Let H be a separable Hilbert space and T ∈ B(H) a normal
operator. Then σ(T ) = f(Ω), where f is the function in L∞(Ω, µ) that
diagonalizes T .

Proof. Since T = UMfU
∗, we have

σ(T ) = σ(UMfU
∗) = σ(Mf ) = f(Ω)

�

Example. Let H = `2(Z) and T : `2(Z)→ `2(Z) be given by

T (xn)n = (xn−1 + xn+1)n

It’s easily checked that T ∈ B(`2(Z)). Further, one checks that T is self
adjoint (i.e. T ∗ = T ) and therefore T is normal. Hence, T is diagonalizable.

We now find all the ingredients that make T diagonalizable. Let Ω = S1

with µ normalized Lebesgue measure on S1 and σ-algebra B(S1) given by
all the Borel sets on S1. We know that (S1,B(S1), µ) is a finite measure
space, in fact µ(S1) = 1. Next, we define functions un : S1 → S1 by
un(eiθ) = einθ. Then, {un : n ∈ Z} is an orthonormal basis for L2(S1, µ).
We let U : L2(S1, µ)→ `2(Z) be given by

Ug :=

(∫
S1

gundµ

)
n

.
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We check that U is unitary. Indeed, first notice that

〈Ug, (xn)n〉 =
∑
n∈Z

(∫
S1

gun dµ

)
xn =

∫
S1

g

(∑
n∈Z

unxn

)
dµ = 〈g,

∑
n∈Z

unxn〉

whence
U∗(xn)n =

∑
n∈Z

unxn

Therefore, by orthonormality of {un : n ∈ Z} and since µ(S1) = 1 we have

UU∗(xn)n =

(∫
S1

(∑
n∈Z

unxn

)
ukdµ

)
k

= (xn)n,

also, by Parseval we get

U∗Ug =
∑
n∈Z

un

(∫
S1

gundµ

)
=
∑
n∈Z

un〈g, un〉 = g

This gives that U is a unitary operator. Next, we define f : S1 → R by

f(eiθ) = 2 cos(θ)

Since |f | ≤ 2, it follows that f ∈ L∞(S1, µ). Furthermore, notice that
f = u−1 + u1 (this is because e−iθ + eiθ = 2 cos(θ)). Then, we compute

UMfg = U(u−1g + u1g) =

(∫
S1

(u−1g + u1g)undµ

)
n

=

(∫
S1

(u−1un + u1un)gdµ

)
n

=

(∫
S1

(un+1 + un−1)gdµ

)
n

=

(∫
S1

gun+1 dµ+

∫
S1

gun−1 dµ

)
n

= T

(∫
S1

gun dµ

)
n

= TUg

That is, UMf = TU , and therefore T = UMfU
∗, as we wanted to show. H

Remark. Notice that the T from the example above is not compact. In
fact, σ(T ) = f(S1) = [−2, 2], so T can’t have discrete spectrum consisting
of eigenvalues. H
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We now give a sketch of the proof for the spectral theorem:

Theorem. (The Spectral Theorem) Let H be a separable Hilbert space and
T ∈ B(H) a normal operator. Then T is diagonalizable.

Sketch of Proof. Let A := C∗({I, T}), the C∗ algebra generated by T and
the identity.

Step 1: By separability of H, we can write H =
⊕

n∈JHn, where J ⊆ N and
for each n ∈ J, there is ξn ∈ Hn such that

Aξn = {Sξn : S ∈ A} = Hn

Step 2: Fix n ∈ J. Define Tn := T |Hn . Since T is normal, Tn is also normal.
Let Ωn = σ(Tn). Define ϕn : C(Ωn)→ C by

ϕn(f) := 〈f(Tn)ξn, ξn〉,

where f 7→ f(Tn) is the functional calculus for Tn. One checks that ϕn is a
positive linear functional, and therefore, by the Riesz-Markov representation
theorem there is a positive Borel measure µn on Ωn such that

ϕn(f) =

∫
Ωn

fdµn.

Further, since Ωn is compact, we must have µn(Ωn) < ∞. Standard com-
putations give ‖f(Tn)ξn‖ = ‖f‖L2(Ωn,µn) and therefore Unf := f(Tn)ξn de-
fines a unitary operator Un : C(Ωn) → Anξn where An := C∗({I, Tn}).
This operator extends by density to Un : L2(Ωn, µn) → Hn and satisfies
UnMfg = f(Tn)Ung for all f ∈ C(Ωn), for all g ∈ L2(Ωn, µn). In particular,
if ιn : Ωn → C is the canonical inclusion, if follows that UnMιn = TnUn.
This gives that Tn is diagonalizable.

Step 3: Finally, since each Tn is diagonalizable on Hn by Step 2, one checks
that this implies that T is diagonalizable on H. “�”
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